

# High Technology Systems with Low Technology Failures

Some Experience with Rockets on Software Quality & Integration

Larry G. Craig
NASA Launch Services Program
Kennedy Space Center

**February 10, 2010** 



# **Launch Vehicles (aka Rockets)**





## **Background**

- What is a launch vehicle (rocket) and what is it supposed to do?
  - A system which provides a spacecraft with the correct velocity and position at the correct time to be in the desired orbit
  - It just keeps adding velocity by accelerating until it gets to the desired orbit velocity
- Where did rockets come from?
  - The Chinese invented gunpowder and put it in bamboo tubes for essentially fireworks for festivals in about the 1<sup>st</sup> century AD
- Why did this technology not advance very far until the 20<sup>th</sup> century AD?
  - Inertial Guidance which consists of Navigation, Guidance & Control
  - This is the major functionality difference which separates model rockets from real rockets



### Model Rockets vs. Real Rockets



Model Rockets \$5.00 - \$200.00



Real Rockets \$30 M - \$500 M



## What is Navigation, Guidance & Control

John F. Kennedy Space Center

- Navigation Where am I?
- Guidance What is the path I want to take to get to where I want to go?
- Control How do I keep on the path to get there?
- The invention of the accelerometer and gyroscopes allowed us to measure the value and direction of acceleration
- Numerically integrate acceleration and you get velocity
- Numerically integrate again and you get position
- If you know where you started you can guide to your desired end point
- BUT it took a computer to perform the numerical computations



#### Quiz

LAUNCH SERVICES PROGRAM

#### **Question #1**

What do you get when you cross a computer with a battleship?

#### **Question #2**

What do you get when you cross a computer with a camera?

#### Question#3

What do you get when you cross a computer with an automobile

#### **Question #4**

What do you get when you cross a computer with a rocket?



## **System Aspects**

- Anytime you introduce computer technology into an engineered system you inherit the failure modes of the computer including software
- What is a system?
  - A construct or collection of different elements that together produce results not obtainable by the elements alone
  - Rockets have system requirements to accomplish their function as a system
- What is quality?
  - Conformance to requirements (does it work at the system level?)
  - Sometimes confused with luxury which is the presence or absence of certain product requirements or features



## **History of Rocket Failure Causes**

- Early Flights
  - Design & Environment Errors
- More Recent Flights
  - Undetected processing errors (damaged systems)
  - Systems integration errors (systems do not play together like they should)
  - Collateral damage (propagated failures in complex systems)
- Some Rather Notable Failure Case Studies in Rocket Software Integration
  - Commercial Titan 3 Flight 2 (CT 2)
  - Ariane 5 Flight 1 (501)
  - Titan IV Centaur Flight 14 (TC 14)



# **Commercial Titan 3 Launch Vehicle**





## Commercial Titan 3 Flight 2 (CT 2)

- Commercial Version Modification of DoD/NASA Titan
  - Intended to compete in the commercial communication satellite market
  - Single and Dual Spacecraft Payload Configurations
- First Flight was a Dual Payload Configuration
  - Successfully Injected and Separated the Skynet 4A & JCSAT2 payloads on December 31, 1989
- Second Flight was a Single Payload Configuration
  - Failed to Separate the Single INTELSAT 603 Payload when commanded when launched on March 14, 1990
  - \$265 M Loss (Uninsured \$150 M Payload)
- Incorrect Software/Electrical Configuration when switching from Dual to Single Payload Configuration
  - Inadequate testing to detect the design error
- CT 3<sup>rd</sup> flight with the same INTELSAT 6 payload was a success



# **Commercial Titan 3 Payload Configurations**

John F. Kennedy Space Center

LAUNCH SERVICES PROGRAM

### **Dual Payload Configuration**

#### **Single Payload Configuration**



Separation Command Wire Harnesses



# The Rest of the INTELSAT 603 Story





STS - 49 Retrieval Mission



## **Ariane 5 Launch Vehicle**





#### Ariane 501

- First Flight of a major upgrade from Ariane 4 to Ariane 5
  - Addition of large solid rocket boosters
  - Intended to capture a large share of the commercial communication satellite launch market
  - \$ 7 Billion development program
  - Launched on June 4, 1996
- 37 seconds after engine ignition the vehicle abruptly changed attitude, broke apart due to aerodynamic forces and initiated the vehicle flight termination system
  - \$370 M Loss
- Control system sent an unneeded major attitude change signal to the engine control actuators
- Guidance system sent erroneous data to the control system due to a shutdown of the inertial measurement unit (IMU) computer



# **Ariane 501 Flight**



Liftoff!



37 seconds later !!!



## What happened to Ariane 501?

- Data transmitted from the IMU was not proper flight measurement data but was a diagnostic bit pattern of the IMU computer which was interpreted as flight data
- The IMU computer had declared a failure due to a software exception
- The internal IMU software exception was caused during execution of a data conversion from 64 bit floating point to a 16 bit signed integer value
  - The floating point number which was converted had a value greater than what could be represented by a 16 bit signed integer
  - Related to a horizontal velocity measurement
  - Resulted in an Operand Error
- The data conversion instructions in Ada code were not protected from causing an Operand Error



## What happened to Ariane 501? (cont)

John F. Kennedy Space Center

- The exception handling mechanism for the IMU computer was
  - The failure was to be indicated on the databus
  - Failure context stored in EEPROM
  - Processor shut down
- Attempted to switch to a redundant IMU processor
  - Could not do so because the redundant IMU processor had failed during the previous data cycle for the same reason
- Error occurred during in a part of the software which is used for strap down inertial platform alignment
  - Provides meaningful results only prior to liftoff
  - After liftoff this function serves no purpose
- The alignment function was operative for 47 sec after liftoff
  - Time sequence was based on requirements for Ariane 4 and was not required for Ariane 5 (Reuse/commonality of software)
  - Used for rapid realignment of IMU on Ariane 4



## What happened to Ariane 501? (cont)

John F. Kennedy Space Center

- The Operand Error occurred due to an unexpected high value of a variable called horizontal bias
  - Related to sensed horizontal velocity
  - Horizontal velocity value for Ariane 5 was about 5 times the value for Ariane 4
- IMU System was not tested with the simulated Ariane 5 trajectory
  - IMU specification did not contain the Ariane 5 trajectory as a functional requirement
  - When they did so the failure was duplicated
  - IMU specifications did not indicate operational restrictions



## **Titan IV Centaur Launch Vehicle**





## **Titan IV Centaur Flight 14**

- Titan IV Centaur is a US launch vehicle used for DoD & NASA missions
- Launched on April 30, 1999
- Upper stage (Centaur) tumbled out of control after spinning itself at a value an order of magnitude too high
  - Spacecraft placed in useless orbit
  - Due to an incorrect roll sensor gain software parameter value off by an order of magnitude (or one decimal place)
  - \$ 1 Billion Payload Loss (Uninsured US Air Force payload)
- Roll is motion about the longitudinal axis of a rocket
  - Occurs while sitting on the earth due to earth rotation
- Incorrect software value could have been detected in prelaunch testing data analysis
  - In specification but out of family



## **Failure Mitigation Strategies**

- Practice Systems Engineering
  - Know how everything works as a system
  - Have domain knowledge of functionality/criticality
  - In a control system everything matters (sensors, computation, actuators and their data)
  - Software has imbedded assumptions in its logic
- Think about what can go wrong
  - Success is eliminating/mitigating causes of failure
  - Maybe use some formal failure analysis techniques
    - » FMECA, Event Sequence Diagrams
  - Think about how to make systems robust
  - Study technology history and learn from others mistakes
- Devise simple sanity tests/data analysis to eliminate errors
  - Think functionality
  - Analyze the data
  - Isolate one function at a time



## **Failure Mitigation Strategies (cont)**

- Testing
  - Tests to prove no possibility of a negative function
  - Graceful degradation/failure handling
  - Try to break the software
- Progressive levels of integration testing
  - Elements may work by themselves but not together
- End to End and Integrated Testing
  - Test Like You Fly
  - Fly Like You Test
- Random Hardware Failures are Rare
  - Design, Integration, Testing & Data Analysis Failures are NOT